Answer:
Estimate of the stock's current price=$132.71
Explanation:
Price of the stock today = [tex]\frac{D1}{(1+ke)^1}+\frac{D2}{(1+ke)^2}+\frac{D3}{(1+ke)^3}+\frac{P3}{(1+ke)^3}[/tex].
where [tex]D_1= D_0*(1+g)=2.2(1.22)=2.684[/tex]
and ke using CAPM = [tex]r_f+b(r_m-r_f)[/tex] = 0.065+1.4(0.02)=0.093
and P3= [tex]\frac{D4}{ke-g}[/tex]
Estimate of the stock's current price = [tex]\frac{2.684}{(1+0.093)^1}+\frac{2.684(1.22)}{(1+0.093)^2}+\frac{2.684(1.22)(1.07)}{(1+0.093)^3}+\frac{2.684(1.22)(1.07^2)}{(0.093-0.07)(1+ke)^3}[/tex] = 132.71