Answer:
[tex]\frac{F}{W} = 9.37 \times 10^{-4}[/tex]
Explanation:
Radius of the pollen is given as
[tex]r = 12.0 \mu m[/tex]
Volume of the pollen is given as
[tex]V = \frac{4}{3}\pi r^3[/tex]
[tex]V = \frac{4}{3}\pi (12\mu m)^3[/tex]
[tex]V = 7.24 \times 10^{-15} m^3[/tex]
mass of the pollen is given as
[tex]m = \rho V[/tex]
[tex]m = 7.24 \times 10^{-12}[/tex]
so weight of the pollen is given as
[tex]W = mg[/tex]
[tex]W = (7.24 \times 10^{-12})(9.81)[/tex]
[tex]W = 7.1 \times 10^{-11}[/tex]
Now electric force on the pollen is given
[tex]F = qE[/tex]
[tex]F = (-0.700\times 10^{-15})(95)[/tex]
[tex]F = 6.65 \times 10^{-14} N[/tex]
now ratio of electric force and weight is given as
[tex]\frac{F}{W} = \frac{6.65 \times 10^{-14}}{7.1 \times 10^{-11}}[/tex]
[tex]\frac{F}{W} = 9.37 \times 10^{-4}[/tex]