Answer:
Part a)
[tex]M = 6.08 \times 10^{19} kg[/tex]
Part b)
[tex]T = 4510 hours[/tex]
Explanation:
As we know that stone is thrown upwards with speed
[tex]v_i = 12 m/s[/tex]
Now it returns back to the surface of Earth after t = 6 s
so the displacement of the stone is zero
[tex]\Delta y = 0 = v t + \frac{1}{2}at^2[/tex]
[tex]0 = 12 t - \frac{1}{2}g t^2[/tex]
[tex]g = \frac{2(12)}{t}[/tex]
[tex]g = 4 m/s^2[/tex]
Part a)
Now we know that the circumference of the planet at the equator is of length
[tex]L = 2 \times 100 km[/tex]
[tex]2\pi R = 2\times 10^5 m[/tex]
[tex]R = 3.2 \times 10^4 m[/tex]
Now we have formula of acceleration due to gravity as
[tex]g = \frac{GM}{R^2}[/tex]
[tex]4 = \frac{6.67 \times 10^{-11} M}{(3.2 \times 10^4)^2}[/tex]
[tex]M = 6.08 \times 10^{19} kg[/tex]
Part b)
Time to complete one revolution around the planet is given as
[tex]T = 2\pi\sqrt{\frac{r^3}{GM}}[/tex]
here we know that
r = distance from center of the planet
[tex]r = 3.2 \times 10^4 + 3\times 10^7 = 3.003 \times 10^7 m[/tex]
now we have
[tex]T = 2\pi\sqrt{\frac{(3.003\times 10^7)^3}{(6.67 \times 10^{-11})(6.08\times 10^{19})}}[/tex]
[tex]T = 4510 hours[/tex]