A solution of 0.5 g of an unknown nonvolatile, nonelectrolyte solute is added to 100 mL of water and then placed across a semipermeable membrane from a volume of pure water. When the system reaches equilibrium, the solution compartment is elevated 5.6 cm above the solvent compartment. Assuming that the density of the solution is 1.0 g / mL, calculate the molecular mass of the unknown.

Respuesta :

Explanation:

The given data is as follows.

     Height = 5.6 cm = [tex]5.6 cm \times \frac{0.01 m}{1 cm}[/tex] = 0.056, density = 1.0 g/ml, g = 9.8 m/s

As it is known that pressure is equal to height times density times acceleration due to gravity.

Mathematically,          P = [tex]h \times d \times g[/tex]

Now, putting the given values as follows.

                        P = [tex]h \times d \times g[/tex]

                           = [tex]0.056 m \times 1.0 g/cm^{3} \times 10^{3}cm^{3}  \times 9.8 m/s[/tex]

                           = 548.8 Pa

As 1 pascal equals 101325 atm. Hence, converting the given pressure into atmosphere as follows.

                         [tex]\frac{548.8}{101325}[/tex] atm

                      = [tex]5.4 \times 10^{-3} atm[/tex]

 As the effect of concentration on osmotic pressure is as follows.

                         PV = inRT

    or,                   P = [tex]i \frac{n}{V}RT[/tex]

                           P = iMRT

where,       M = molarity

                  R = gas constant = 0.0821 [tex]atm L/mol K[/tex]

                  T = 298 K

                  i = 1 (for non-electrolyte)

Hence, calculate the molarity as follows.

                         P = iMRT

      [tex]5.4 \times 10^{-3} atm[/tex] = [tex]1 \times M \times 0.082 L atm/mol K \times 298 K[/tex]    

                             = [tex]2.25 \times 10^{-4}[/tex]

Also,    Molarity = [tex]\frac{weight}{\text{molar mass}} \times \frac{1000}{V}[/tex]

        [tex]2.25 \times 10^{-4}[/tex] = [tex]\frac{0.5}{\text{molar mass}} \times \frac{1000}{100}[/tex]    

                                       = 22585.6 g/mol

Thus, we can conclude that molecular mass of the unknown is 22585.6 g/mol.

Answer:

The molecular mass of the unknown is 22655.18 g/mol

Explanation:

Please look at the solution in the attached Word file

Ver imagen lcoley8