Explanation :
Significant figures : The figures in a number which express the value -the magnitude of a quantity to a specific degree of accuracy is known as significant digits.
The rule apply for the multiplication and division is :
The least number of significant figures in any number of the problem determines the number of significant figures in the answer.
The rule apply for the addition and subtraction is :
The least precise number present after the decimal point determines the number of significant figures in the answer.
(a) 628 × 342
[tex]628\times 342=214776=2.15\times 10^5[/tex]
The correct answer is, [tex]2.15\times 10^5[/tex]
(b) (5363 × 102) × (7.4 × 103)
[tex](5363\times 102)\times(7.4\times 103)=547026\times 762.2=(5.47\times 10^5)\times (7.6\times 10^2)=41.572\times 10^7=4.2\times 10^8[/tex]
The correct answer is, [tex]4.2\times 10^8[/tex]
(c) 28.0 ÷ 13.483
[tex]\frac{28.0}{13.483}=2.08[/tex]
The correct answer is, 2.08
(d) 8119 × 0.000023
[tex]8119\times 0.000023=0.186737=1.9\times 10^{-1}[/tex]
The correct answer is, [tex]1.9\times 10^{-1}[/tex]
(e) 14.98 + 27,340 + 84.7593
[tex]14.98+27340+84.7593=27439.7393=2.744\times 10^4[/tex]
The correct answer is, [tex]2.744\times 10^4[/tex]
(f) 42.7 + 0.259
[tex]42.7+0.259=42.959=43.0=4.30\times 10^1[/tex]
The correct answer is, [tex]4.30\times 10^1[/tex]