Respuesta :

Answer:

  Range: {y ∈ ℝ : y ≤ -5}

  Domain: {x ∈ ℝ : x ≥ 4}

Step-by-step explanation:

The domain and range of f(x) are governed by the definition of the square root function. It only takes non-negative arguments, and it only produces non-negative results. This will mean ...

  3x -12 ≥ 0 . . . the argument of the square root must not be negative

  x ≥ 12/3 . . . . add 12 and divide by the coefficient of x

  x ≥ 4 . . . . . . the domain of the function

__

  y = -√ -5 . . . . . . . abbreviated form of f(x) using √ to mean √(3x-12)

  y +5 = -√ . . . . . . . add 5

  -5 -y = √ . . . . . . . multiply by -1

  -5 -y ≥ 0 . . . . . . . invoke the limitation on the output of √

  -5 ≥ y . . . . . . . . . . add y . . . . . the range of the function