A solid 0.75 in diameter steel shaft transmits 7 hp at 3,200 rpm. Determine the maximum shear stress magnitude produced in the shaft. Hint: Use P=Tω and convert hp to ft-lbf/s. Find τ by using Tc/J. Recall max shear stress will be on the outer most surface.

Respuesta :

Answer:[tex]\tau _\left ( max\right )[/tex]=11.468MPa

Explanation:

Given data

[tex]power[/tex][tex]\left ( P\right )[/tex]=7 hp=5220 W

N=3200rpm

[tex]\omega [/tex]=[tex]\frac{2\pi\times N}{60}[/tex]=335.14 rad/s

diameter[tex]\left ( d\right )[/tex]=0.75in=19.05mm

we know

P=[tex]Torque\left ( T\right )\omega [/tex]

5220=[tex]T\times 335.14[/tex]

T=15.57 N-m

And

[tex]\tau _\left ( max\right )[/tex]=[tex]\frac{T}{Polar\ modulus}[/tex]

[tex]\tau _\left ( max\right )[/tex]=[tex]\frac{T}{Z_{P}}[/tex]

[tex]\tau _\left ( max\right )[/tex]=[tex]\frac{16\times T}{\pi d^{3}}[/tex]

[tex]\tau _\left ( max\right )[/tex]=11.468MPa

Answer:

Maximum shear stress is 11.47 MPa.

Explanation:

Given:

D=.75 in⇒D=19.05 mm

P=7 hp⇒ P=5219.9 W

N=3200 rpm

We know that

    P=T[tex]\times \omega[/tex]

Where T is the torque and [tex]\omega[/tex] is the speed of shaft.

   P=[tex]\frac{2\pi N\times T}{60}[/tex]

So    5219.9=[tex]\frac{2\pi \times 3200\times T}{60}[/tex]

 T=15.57 N-m

We know that maximum shear stress in shaft

[tex]\tau _{max}=\dfrac{16T}{\pi \times D^3}[/tex]

[tex]\tau _{max}=\dfrac{16\times 15.57}{\pi \times 0.01905^3}[/tex]

[tex]\tau _{max}[/tex]=11.47 MPa

So maximum shear stress is 11.47 MPa.