A large bottle contains 150 L of water, and is open to the atmosphere. If the bottle has a flat bottom with an area of 2 ft, calculate the absolute pressure at the bottom of the bottle. Give your answer in Pa. Assume the water has a density of 1000 kg/m, and assume the system is at sea level on Earth. Answer: over 100,000 Pa

Respuesta :

Answer:

Total pressure exerted at bottom =  119785.71 N/m^2

Explanation:

given data:

volume of water in bottle = 150 L = 0.35 m^3

Area of bottle = 2 ft^2

density of water = 1000 kg/m

Absolute pressure on bottom of bottle will be sum of atmospheric pressure and pressure due to water

Pressure due to water P = F/A

F, force exerted by water = mg

m, mass of water = density * volume

                             =  1000*0.350 = 350 kg

F  = 350*9.8 = 3430 N

A = 2 ft^2 = 0.1858 m^2  

so, pressure P = 3430/ 0.1858 = 18460.71 N/m^2

Atmospheric pressure

At sea level atmospheric pressure is 101325 Pa

Total pressure exerted at bottom  = 18460.71 + 101325 = 119785.71 N/m^2

Total pressure exerted at bottom =  119785.71 N/m^2