Answer: 0.0089
Step-by-step explanation:
Given : Mean : [tex]\mu=\ 330[/tex]
Standard deviation :[tex]\sigma= 80[/tex]
Sample size : [tex]n=40[/tex]
We know that the standard error of the mean is given by :-
[tex]\text{S.E.}=\dfrac{\sigma}{\sqrt{n}}\\\\\Rightarrow\text{S.E.}=\dfrac{80}{\sqrt{40}}\\\\\Rightarrow\ \text{S.E.}=12.6491106407\approx12.65[/tex]
The formula to calculate the z-score :-
[tex]z=\dfrac{x-\mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]
For x = 360
[tex]z=\dfrac{360 -330}{\dfrac{80}{\sqrt{40}}}=2.37170824513\approx2.37[/tex]
The p-value = [tex]P(z>2.37)=1-P(z<2.37)= 1- 0.9911059\approx0.0089[/tex]
Hence, the likelihood the sample mean is greater than 360 minutes= 0.0089