Sulfur dioxide and oxygen react to form sulfur trioxide during one of the key steps in sulfuric acid synthesis. An industrial chemist studying this reaction fills a 25.0L tank with 4.5 mol of sulfur dioxide gas and 4.5 mol of oxygen gas at 30.°C. He then raises the temperature, and when the mixture has come to equilibrium measures the amount of sulfur trioxide gas to be 1.4 mol. Calculate the concentration equilibrium constant for the reaction of sulfur dioxide and oxygen at the final temperature of the mixture. Round your answer to 2 significant digits.

Respuesta :

Answer:

1.3 is the concentration equilibrium constant for the reaction of sulfur dioxide and oxygen at the final temperature of the mixture.

Explanation:

Initial Concentration of sulfur dioxide = [tex][SO_2]=\frac{4.5 mol}{25 L}=0.18 M[/tex]

Initial Concentration of oxygen= [tex][O_2]=\frac{4.5 mol}{25 L}=0.18 M[/tex]

              [tex]2SO_2+O_2\rightleftharpoons 2SO_3[/tex]

Initially  (0.18 M)    (0.18 M)         0

Eq'm     (0.18 -2x)   (0.18 -x)     2x

Equilibrium concentration of sulfur trioxide =[tex][SO_3]=2x=\frac{1.4 mol}{25 L}=0.056 M[/tex]

x = 0.028 M

Equilibrium concentration of sulfur dioxide =[tex][SO_2]'=(0.18 -2x)=0.18 - 0.056 =0.124 M[/tex]

Equilibrium concentration of oxygen=[tex][O_2]'=(0.18 -x)=0.18 - 0.028 =0.152 M[/tex]

The expression for an  equilibrium constant will be :

[tex]K_c=\frac{[SO_3]^2}{[SO_2]'^2[O_2]'}[/tex]

[tex]K_c=\frac{(0.056 M)^2}{(0.124 M)^2(0.152 M)}=1.3418\approx 1.3[/tex]

1.3 is the concentration equilibrium constant for the reaction of sulfur dioxide and oxygen at the final temperature of the mixture.