Answer:
4) Reflect over the y-axis, reflect over the x-axis, rotate 180°
Step-by-step explanation:
Since, the rule of 180° rotation,
[tex](x,y)\rightarrow (-x,-y)[/tex]
Rule of reflection over x-axis,
[tex](x,y)\rightarrow (x,-y)[/tex]
Rule of reflection over y-axis,
[tex](x,y)\rightarrow (-x,y)[/tex]
Rule of reflection over line y = x,
[tex](x,y)\rightarrow (y,x)[/tex]
∵ In the set of reflection,
Rotate 180°, reflect over the x-axis, reflect over the line y=x,
[tex](x,y)\rightarrow (-x,-y)\rightarrow (-x,y)\rightarrow (y,-x)[/tex]
Reflect over the x-axis, rotate 180°, reflect over the x-axis,
[tex](x,y)\rightarrow (x,-y)\rightarrow (-x,y)\rightarrow (-x,-y)[/tex]
Rotate 180°, reflect over the y-axis, reflect over the line y=x,
[tex](x,y)\rightarrow (-x,-y)\rightarrow (x,-y)\rightarrow (-y,x)[/tex]
Reflect over the y-axis, reflect over the x-axis, rotate 180°,
[tex](x,y)\rightarrow (-x,y)\rightarrow (-x,-y)\rightarrow (x,y)[/tex]
Hence, the set of reflections and rotations that would carry rectangle ABCD onto itself is,
Reflect over the y-axis, reflect over the x-axis, rotate 180°.
Option '4' is correct.