Find the x-intercepts of the parabola with
vertex (6,-5) and y-intercept (0,175).
Write your answer in this form: (x1,71),(x2,42).
If necessary, round to the nearest hundredth.
Enter the correct answer.

Respuesta :

Answer:

The x-intercepts are (5,0) and (7,0)

Step-by-step explanation:

we know that

The equation of a vertical parabola in vertex form is equal to

[tex]y=a(x-h)^{2}+k[/tex]

where

a is a coefficient

(h,k) is the vertex

In this problem we have

(h,k)=(6,-5)

substitute

[tex]y=a(x-6)^{2}-5[/tex]

Find the coefficient a

with the y-intercept (0,175) substitute the value of x and the value of y in the equation

For x=0, y=175

[tex]175=a(0-6)^{2}-5[/tex]

[tex]175=36a-5[/tex]

[tex]36a=180[/tex]

[tex]a=5[/tex]

substitute

[tex]y=5(x-6)^{2}-5[/tex]

Find the x-intercepts

Remember that the x-intercepts are the values of x when the value of y is equal to zero

For y=0

[tex]0=5(x-6)^{2}-5[/tex]

[tex]5(x-6)^{2}=5[/tex]

simplify

[tex](x-6)^{2}=1[/tex]

square root both sides

[tex]x-6=(+/-)1[/tex]

[tex]x=6(+/-)1[/tex]

[tex]x=6(+)1=7[/tex]

[tex]x=6(-)1=5[/tex]

therefore

The x-intercepts are (5,0) and (7,0)