Respuesta :

Answer:

B

Step-by-step explanation:

Using the Sine Rule in ΔABC

[tex]\frac{a}{sinA}[/tex] = [tex]\frac{b}{sinB}[/tex] = [tex]\frac{c}{sinC}[/tex]

∠C = 180° - (82 + 58)° = 180° - 140° = 40°

Completing values in the above formula gives

[tex]\frac{a}{sin58}[/tex] = [tex]\frac{b}{sin82}[/tex] = [tex]\frac{8.4}{sin40}[/tex]

We require a pair of ratios which contain b and 3 known quantities, that is

[tex]\frac{b}{sin82}[/tex] = [tex]\frac{8.4}{sin40}[/tex]

OR

[tex]\frac{sin40}{8.4}[/tex] = [tex]\frac{sin82}{b}[/tex] → B