Respuesta :

Answer:

[tex]y=-6.6[/tex] and [tex]y=10.6[/tex]

Step-by-step explanation:

The given ellipse has equation:

[tex]\frac{(y-2)^2}{64}+\frac{x^2}{9}=1[/tex].

The center of this ellipse is (h,k)=(0,2)

We use the equation: [tex]a^2-b^2=c^2[/tex] to determine the foci.

[tex]\implies 64-9=c^2[/tex]

[tex]\implies 55=c^2[/tex]

[tex]\implies c=\pm \sqrt{55}[/tex]

The directrices are given by [tex]y=k\pm\frac{a^2}{c}[/tex]

[tex]y=2\pm\frac{64}{\sqrt{55}}[/tex]

[tex]y=2\pm8.6[/tex]

[tex]y=2-8.6[/tex] and [tex]y=2+8.6[/tex]

The equation of the directrices are:

[tex]y=-6.6[/tex] and [tex]y=10.6[/tex]

The correct answer is D