Respuesta :

Answer:

-2B

Step-by-step explanation:

log₉ (1/16)

log₉ (16^-1)

log₉ (4^-2)

Using exponent property of logs:

-2 log₉ (4)

Substituting:

-2B

Answer:

-2B

(I guess this is what you are looking for; didn't need A or C).

Step-by-step explanation:

It seems like to wants us to to find [tex]\log_9(\frac{1}{16})[/tex] in terms of [tex]A,B,C[/tex].

First thing I'm going to do is rewrite  [tex]\log_9(\frac{1}{16})[/tex]  using the quotient rule.

The quotient rule says:

[tex]\log_m(\frac{a}{b})=\log_m(a)-\log_m(b)[/tex]

So that means for our expression we have:

[tex]\log_9(\frac{1}{16})=\log_9(1)-\log_9(16)[/tex]

Second thing I'm going to do is say that [tex]\log_9(1)=0 \text{ since } 9^0=1[/tex].

[tex]\log_9(\frac{1}{16})=\log_9(1)-\log_9(16)[/tex]

[tex]\log_9(\frac{1}{16})=-\log_9(16)[/tex]

Now I know 16 is 4 squared so the third thing I'm going to do is replace 16 with 4^2 with aim to use power rule.

[tex]\log_9(\frac{1}{16})=\log_9(1)-\log_9(16)[/tex]

[tex]\log_9(\frac{1}{16})=-\log_9(16)[/tex]

[tex]\log_9(\frac{1}{16})=-\log_9(4^2)[/tex]

The fourth thing I'm going to is apply the power rule. The power rule say [tex]\log_a(b^x)=x\log_a(b)[/tex]. So I'm applying that now:

[tex]\log_9(\frac{1}{16})=\log_9(1)-\log_9(16)[/tex]

[tex]\log_9(\frac{1}{16})=-\log_9(16)[/tex]

[tex]\log_9(\frac{1}{16})=-2\log_9(4)[/tex]

So we are given that [tex]\log_9(4)[/tex] is [tex]B[/tex]. So this is the last thing I'm going to do is apply that substitution:

[tex]\log_9(\frac{1}{16})=\log_9(1)-\log_9(16)[/tex]

[tex]\log_9(\frac{1}{16})=-\log_9(16)[/tex]

[tex]\log_9(\frac{1}{16})=-2\log_9(4)[/tex]

[tex]\log_9(\frac{1}{16})=-2B[/tex]