Respuesta :

Solution:

Given:

mass of air, m = 0.50 Kg

[tex]T_{1}[/tex] = 25°C = 273+25 = 298 K

[tex]T_{2}[/tex] = 100°C = 273+100 = 373 K

[tex]T_{o}[/tex] = 200°C = 273+100 = 473 K

Solution:

Formulae used:

ΔQ = mCΔT                                          (1)

ΔS = [tex]\frac{\Delta Q}{T_{o}}[/tex]    (2)

where,

ΔQ = change in heat transfer

ΔS = chane in entropy

C = specific heat

ΔT = change in system temperature

Using eqn (1)

ΔQ = [tex]0.50\times 1.005\times (373-298)[/tex] = 36.687 kJ

Now, for entropy generation, using eqn (2)

ΔS = [tex]\frac{37.687}{473}[/tex] = 0.0796 kJ