A particle moves along a circular path of radius 300 mm. If its angular velocity is θ = (2t) rad/s, where t is in seconds, determine the magnitude of the particle's acceleration when t= 2 s.

Respuesta :

Answer:

4.83m/[tex]s^{2}[/tex]

Explanation:

For a particle moving in a circular path the resultant  acceleration at any point is the vector sum of radial and the tangential acceleration

Radial acceleration is given by [tex]a_{radial}=w^{2}[/tex]r

Applying values we get  [tex]a_{radial}=(2t)^{2}[/tex]X0.3m

Thus [tex]a_{radial}=1.2t^{2}[/tex]

At time = 2seconds [tex]a_{radial}= 4.8m/s^{2}[/tex]

The tangential acceleration is given by [tex]a_{tangential} =\frac{dV}{dt}=\frac{d(wr)}{dt}[/tex]

[tex]a_{tangential}=\frac{d(2tr)}{dt}[/tex]

[tex]a_{tangential}= 2r[/tex]

[tex]a_{tangential}=0.6m/s^{2}[/tex]

Thus the resultant acceleration is given by

[tex]a_{res} =\sqrt{a_{rad}^{2}+a_{tangential}^{2}}[/tex]

[tex]a_{res} =\sqrt{4.8^{2}+0.6^{2}  } =4.83m/s^{2}[/tex]