Answer:
30 cm
Explanation:
For Reynold's number similarity between model and prototype we should have
[tex]R_{e} _{model} =R_{_{e prototype}} \\\\\frac{V_{model} L_{model} }{kinematic viscosity in model} =\frac{V_{proto}L_{proto} }{kinematic viscosity in prototype}[/tex]
Given L(prototype)= 2cm
V(prototype) = 100m/s
V(model) = 10m/s
Thus applying values in the above equation we get
[tex]\frac{100m/s^{} X2cm^{} }{1X10^{-5}m^{2}/s } =\frac{L_{M}X10m/s }{1.5X10^{-5}m^{2}/s }[/tex]
Solving for Lmodel we get Lm = 30cm