Respuesta :
Answer:
1680 ways
Step-by-step explanation:
Total number of integers = 10
Number of integers to be selected = 6
Second smallest integer must be 3. This means the smallest integer can be either 1 or 2. So, there are 2 ways to select the smallest integer and only 1 way to select the second smallest integer.
2 ways 1 way
Each of the line represent the digit in the integer.
After selecting the two digits, we have 4 places which can be filled by 7 integers. Number of ways to select 4 digits from 7 will be 7P4 = 840
Therefore, the total number of ways to form 6 distinct integers according to the given criteria will be = 1 x 2 x 840 = 1680 ways
Therefore, there are 1680 ways to pick six distinct integers.
Answer:
70 total selections
Step-by-step explanation:
The set: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
You know that that 3 is definitly a part of the set, so you can ignore it. If 3 is the second smallest, the smallest number in the set is either 1 or 2, not both.
The number of ways to choose between 1 and 2 is [tex]2^{C}1[/tex] ways which is equal to 2, so all that's left is choosing from the group of the set between 4 and 10.
Since you've already chosen 2 numbers (3 and 1 or 2) you need to find out how many ways can you choose 4 out of the numbers between 4 and 10. Since there are 7 numbers from 4 to 10, you need to figure out [tex]7^{C}4[/tex] which is equal to 35.
Since you are looking to find the cross between the 2, multiply 2 by 35 = 70, the answer.