Respuesta :

Answer:

The vertex (h,k) is (-4,-7).

Step-by-step explanation:

I assume you are looking for the vertex [tex]y=-4(x+4)^2-7[/tex].

The vertex form of a quadratic is [tex]y=a(x-h)^2+k[/tex] where the vertex is (h,k) and a tells us if the parabola is open down (if a<0) or up (if a>0). a also tells us if it is stretched or compressed.

Anyways if you compare [tex]y=-4(x+4)^2-7[/tex] to [tex]y=a(x-h)^2+k[/tex] , you should see that [tex]a=-4,h=-4,k=-7[/tex].

So the vertex (h,k) is (-4,-7).

Answer:

The vertex is [tex](-4,-7)[/tex]

Step-by-step explanation:

The vertex form of a parabola is given by:

[tex]y=a(x-h)^2+k[/tex], where (h,k) is the vertex and [tex]a[/tex] is the leading coefficient.

The given parabola has equation:

[tex]y=-1(x+4)^2-7[/tex]

When we compare to the vertex form, we have

[tex]-h=4\implies h=-4[/tex] and [tex]k=-7[/tex].

Therefore the vertex is (-4,-7)