Answer:
Part 1) [tex]f(x)=\sqrt{x-1}[/tex] -----> Graph C
Part 2) [tex]g(x)=-\sqrt{x}[/tex] ----> Graph D
Part 3) [tex]h(x)=\sqrt{x}[/tex] -----> Graph A
Part 4) [tex]j(x)=-\sqrt{x-1}[/tex] ---> Graph E
Step-by-step explanation:
Part 1) we have
[tex]f(x)=\sqrt{x-1}[/tex]
Find the domain of the function
The radicand must be positive
so
[tex]x-1\geq 0[/tex]
Solve for x
[tex]x\geq 1[/tex]
The domain is the interval -----> [1,∞)
All real numbers greater than or equal to 1
Find the range
For x=1
[tex]f(1)=\sqrt{1-1}=0[/tex]
so
The range is the interval ----> [0,∞)
All real numbers greater than or equal to 0
therefore
The function represent Graph C
Part 2) we have
[tex]g(x)=-\sqrt{x}[/tex]
Find the domain of the function
The radicand must be positive
so
[tex]x\geq 0[/tex]
The domain is the interval -----> [0,∞)
All real numbers greater than or equal to 0
Find the range
For x=0
[tex]f(0)=-\sqrt{0}=0[/tex]
so
The range is the interval ----> (-∞,0]
All real numbers less than or equal to 0
therefore
The function represent Graph D
Part 3) we have
[tex]h(x)=\sqrt{x}[/tex]
Find the domain of the function
The radicand must be positive
so
[tex]x\geq 0[/tex]
Solve for x
[tex]x\geq 0[/tex]
The domain is the interval -----> [0,∞)
All real numbers greater than or equal to 0
Find the range
For x=0
[tex]f(0)=\sqrt{0}=0[/tex]
so
The range is the interval ----> [0,∞)
All real numbers greater than or equal to 0
therefore
The function represent Graph A
Part 4) we have
[tex]j(x)=-\sqrt{x-1}[/tex]
Find the domain of the function
The radicand must be positive
so
[tex]x-1\geq 0[/tex]
Solve for x
[tex]x\geq 1[/tex]
The domain is the interval -----> [1,∞)
All real numbers greater than or equal to 1
Find the range
For x=1
[tex]f(1)=-\sqrt{1-1}=0[/tex]
so
The range is the interval ----> (-∞,0]
All real numbers less than or equal to 0
therefore
The function represent Graph E