Respuesta :
Answer:
1) Solutions are x = 3 and x = 5/3
2) Solution are x ≤ 13/2 and x ≤ -3/2
Step-by-step explanation:
1) Given absolute inequality,
|3x-7| = 2
⇒ 3x - 7 = ± 2
⇒ 3x = 7 ± 2
[tex]\implies x=\frac{7\pm 2}{3}[/tex]
[tex]x=\frac{7+2}{3}\text{ or }x=\frac{7-2}{3}[/tex]
[tex]\implies x = 3\text{ or }x=\frac{5}{3}[/tex]
2) l 2x-5 l ≤ 8
⇒ 2x-5 ≤ ±8
⇒ 2x ≤ 5 ± 8
[tex]\implies x\leq \frac{5\pm 8}{2}[/tex]
[tex]x\leq \frac{5+8}{2}\text{ or }x\leq \frac{5-8}{2}[/tex]
[tex]\implies x \leq \frac{13}{2}\text{ or }x\leq-\frac{3}{2}[/tex]
Answer:
Answer:
1) Solutions are x = 3 and x = 5/3
2) Solution are x ≤ 13/2 and x ≤ -3/2
Step-by-step explanation:
1) Given absolute inequality,
|3x-7| = 2
⇒ 3x - 7 = ± 2
⇒ 3x = 7 ± 2
2) l 2x-5 l ≤ 8
⇒ 2x-5 ≤ ±8
⇒ 2x ≤ 5 ± 8