Respuesta :

lucic

Answer:

[tex]x^\frac{5}{3} y^\frac{1}{3}[/tex]

Step-by-step explanation:

This question is on rules of rational exponential

where the exponential is a fraction, you can re-write it using radicals where the denominator of the fraction becomes the index of the radical;

General expression

[tex]a^\frac{1}{n} =\sqrt[n]{a}[/tex]

Thus    [tex]\sqrt[3]{x} =x^\frac{1}{3}[/tex]

 

Applying the same in the question

[tex]\sqrt[3]{x^5y} =x^\frac{5}{3} y^\frac{1}{3}[/tex]

=[tex]x^\frac{5}{3} y^\frac{1}{3}[/tex]

Answer: Second option

[tex](x^5y)^{\frac{1}{3}} = x^{\frac{5}{3}}y^{\frac{1}{3}}[/tex]

Step-by-step explanation:

By definition we know that:

[tex]a ^{\frac{m}{n}} = \sqrt[n]{a^m}[/tex]

In this case we have the following expression

[tex]\sqrt[3]{x^5y}[/tex]

Using the property mentioned above we can write an equivalent expression for [tex]\sqrt[3]{x^5y}[/tex]

[tex]\sqrt[3]{x^5y} = (x^5y)^{\frac{1}{3}}[/tex]

[tex](x^5y)^{\frac{1}{3}} = x^{\frac{5}{3}}y^{\frac{1}{3}}[/tex]

Therefore the correct option is the second option