Respuesta :

gmany

Answer:

[tex]\large\boxed{y=-\dfrac{3}{10}x+\dfrac{1}{2}}[/tex]

Step-by-step explanation:

The slope-intercept form of an equation of a line:

[tex]y=mx+b[/tex]

m - slope

b - y-intercept

The formula of a slope:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

We have the points from the graph (-5, 2) and (5, -1).

Substitute:

[tex]m=\dfrac{-1-2}{5-(-5)}=\dfrac{-3}{10}=-\dfrac{3}{10}[/tex]

We have the equation in form:

[tex]y=-\dfrac{3}{10}x+b[/tex]

Put the coordinates of the point (5, -1) to the equation:

[tex]-1=-\dfrac{3}{10}(5)+b[/tex]

[tex]-1=-\dfrac{3}{2}+b[/tex]

[tex]-\dfrac{2}{2}=-\dfrac{3}{2}+b[/tex]            add 3/2 to both sides

[tex]\dfrac{1}{2}=b\to b=\dfrac{1}{2}[/tex]