Respuesta :

ANSWER

[tex]y = - 4 {x}^{2} + 4x - 3[/tex]

EXPLANATION

Let the quadratic function be

[tex]y = a {x}^{2} + bx + c[/tex]

We substitute each point to find the constants, a,b, and c.

Substitute: (x=0,y=-3)

[tex] - 3 = a {(0)}^{2} + b(0) + c[/tex]

[tex] \implies \: c = - 3...(1)[/tex]

Substitute: (x=-1,y=-11) and c=-3

[tex] - 11 = a {( - 1)}^{2} + b( - 1) + - 3[/tex]

[tex] \implies \: - 11 = a - b - 3[/tex]

[tex] \implies \: a - b = - 8...(2)[/tex]

Substitute: (x=3,y=-27) and c=-3

[tex] -27= a {( 3)}^{2} + b( 3) + - 3[/tex]

[tex] \implies \: - 27 = 9a + 3b - 3[/tex]

[tex]\implies \: 3a + b = - 8...(3)[/tex]

Add equations (3) and (2)

[tex]3a + a = - 8 + - 8[/tex]

[tex]4a = - 16[/tex]

[tex]a = - 4[/tex]

Put a=-4 in equation (2)

[tex] - 4 - b = - 8[/tex]

[tex] - b = - 8 + 4 [/tex]

[tex] - b = - 4[/tex]

[tex]b = 4[/tex]

The quadratic equation is

[tex]y = - 4 {x}^{2} + 4x - 3[/tex]