Question 1:
For this case we have the following expression:
[tex]\frac {\frac {y-1} {y ^ 2-36}} {\frac {1-7y} {y + 6}} =\\\frac {(7y-1) (y + 6)} {(y ^ 2-36) (1-7y)} =[/tex]
We have to:
[tex]y ^ 2-36 = (y + 6) (y-6)[/tex]
Rewriting:
[tex]\frac {(7y-1) (y + 6)} {(y + 6) (y-6) (1-7y)} =\\\frac {7y-1} {(y-6) (1-7y)} =[/tex]
We take common factor "-" in the denominator:
[tex]\frac {7y-1} {(y-6) * - (- 1 + 7y)} =\\\frac {7y-1} {- (y-6) * (7y-1)} =\\- \frac {1} {(y-6)}[/tex]
ANswer:
[tex]- \frac {1} {(y-6)}[/tex]
Question 2:
For this case we must simplify the following expression:
[tex](3n ^ 4 + 1) + (- 8n ^ 4 + 3) - (- 8n ^ 4 + 2) =[/tex]
We eliminate parentheses keeping in mind that:
[tex]+ * - = -\\- * - = +\\3n ^ 4 + 1-8n ^ 4 + 3 + 8n ^ 4-2 =[/tex]
We add similar terms:
[tex]3n ^ 4-8n ^ 4 + 8n ^ 4 + 1 + 3-2 =\\3n ^ 4 + 2[/tex]
Answer:
[tex]3n ^ 4 + 2[/tex]