Respuesta :

Answer:

3^x-8=8 then x=log_3(16)

3^(x-8)=8 then log_3(8)+8

Step-by-step explanation:

So if it is 3^x-8=8

then 3^x=16

and then convert to logarithmic form you write it as log_3(16)=x

_3 means the subscript (the base) is 3

So if it is 3^(x-8)=8

then the log form is log_3(8)=x-8

add 8 on both sides log_3(8)+8=x

The value of x that satisfies the given equation is 9.8929

Logarithmic equation

From the question, we are to solve [tex]3^{x-8} =8[/tex] for x, using the change of base formula [tex]\log _{b} y = \frac{log _{} y}{log _{} b}[/tex]

From the given equation,

[tex]3^{x-8} =8[/tex]

Take [tex]log_3[/tex] of both sides,

That is,

[tex]\log _{3} 3^{x-8} = \log _{3} 8[/tex]

This becomes,

[tex](x-8)\log _{3} 3= \log _{3} 8[/tex]

Since [tex]\log _{x} x =1[/tex],

∴ [tex]\log _{3} 3 =1[/tex]

[tex](x-8)(1)= \log _{3} 8[/tex]

[tex]x-8= \log _{3} 8[/tex]

Using the change of base formula [tex]\log _{b} y = \frac{log _{} y}{log _{} b}[/tex]

[tex]\log _{3} 8=\frac{\log 8}{\log 3}[/tex]

Then,

[tex]x-8=\frac{\log 8}{\log 3}[/tex]

[tex]x-8=\frac{0.9031}{0.4771}[/tex]

x - 8 = 1.8929

x = 8 + 1.8929

x = 9.8929

Hence, the value of x that satisfies the given equation is 9.8929

Learn more on Logarithmic equation here: https://brainly.com/question/12561540

#SPJ4