Respuesta :

15. [tex](-k^{3} -5k^{2} + 1) - (6k^{3}-k^{2} -2)[/tex]

Step 1: Distribute the subtraction sign to all the numbers in the second set of parentheses...

[tex](-k^{3} -5k^{2} + 1) - (6k^{3}-k^{2} -2)[/tex]

[tex]-k^{3} -5k^{2} +1 - 6k^{3} +k^{2} +2[/tex]

Step 2: Combine like terms ([tex]k^{2}[/tex]'s go with [tex]k^{2}[/tex]'s)

[tex]-k^{3} -5k^{2} + 1 - 6k^{3}+k^{2} +2[/tex]

[tex]-5k^{2} +k^{2}[/tex]

[tex]-4k^{2}[/tex]

[tex]-k^{3} -4k^{2} + 1 - 6k^{3}+2[/tex]

Step 3: Combine like terms ([tex]k^{3}[/tex]'s go with [tex]k^{3}[/tex]'s)

[tex]-k^{3} -4k^{2} + 1 - 6k^{3}+2[/tex]

[tex]-k^{3} + (- 6k^{3})[/tex]

[tex]-7k^{3}[/tex]

[tex]-7k^{3} -4k^{2} + 1 +2[/tex]

Step 4: Combine like terms (normal numbers go with normal numbers)

[tex]-7k^{3} -4k^{2} + 1 +2[/tex]

1 + 2

3

[tex] -7k^{3} -4k^{2} + 3[/tex]

You were correct!

16. [tex]49m^2 - 84mn + 36n^2[/tex]

I don't really know how to explain this one but I got: (7m-6n)(7m-6n)