Respuesta :

Answer:

[tex]\sqrt{13}[/tex]

Step-by-step explanation:

Given the vector < a, b > then the magnitude is

[tex]\sqrt{a^2+b^2}[/tex], thus

| (- 3, 2) | = [tex]\sqrt{(-3)^2+2^2}[/tex] = [tex]\sqrt{9+4}[/tex] = [tex]\sqrt{13}[/tex]

Answer:

The length of the magnitude of the given vector <-3,2> is:

                        [tex]\sqrt{13}[/tex]

Step-by-step explanation:

We know that for any vector of the type: <a,b>

The magnitude of the length of the vector is given by the formula:

[tex]|<a,b>|=\sqrt{a^2+b^2}[/tex] [tex]\sqrt{13}[/tex]

Here we are given the vector as: <-3,2>

i.e. a= -3

and  b=2.

This means that the length of the magnotude of the vector is given by:

[tex]|<-3,2>|=\sqrt{(-3)^2+(2)^2}\\\\i.e.\\\\|<-3,2>|=\sqrt{9+4}\\\\i.e.\\\\|<-3,2>|=\sqrt{13}[/tex]

Hence, the answer is:  [tex]\sqrt{13}[/tex]