Respuesta :

Answer:

Area of equilateral triangle = 43.3 units^2

Step-by-step explanation:

An equilateral triangle is a triangle in which all three sides of triangle are equal.

So,Length = 10 units

Area of triangle = [tex]\frac{\sqrt{3} }{4}*(side)^2[/tex]

                           = [tex]\frac{\sqrt{3} }{4}*(10)^2[/tex]

                           = [tex]\frac{\sqrt{3} }{4}*(100)[/tex]

                          = [tex]43.3units^2[/tex]

So, Area of equilateral triangle = 43.3 units^2.

Hello!

The answer is:

The area of the triangle is equal to  [tex]A=43.30units^{2}[/tex]

Why?

To calculate the area of an equilateral triangle, we need to use the following formula:

[tex]A=\frac{s^{2} *\sqrt{3}}{4}[/tex]

Now, we are given an equilateral triangle, so we know that all of its sides are equal to 10 units.

So, calculating the area we have:

[tex]A=\frac{s^{2} *\sqrt{3} }{4}\\\\A=\frac{(10units)^{2} *\sqrt{3} }{4}\\\\A=\frac{100units^{2} *\sqrt{3} }{4}=43.30units^{2}[/tex]

Have a nice day!