Respuesta :

Answer:

The missing words

# x ⇒ # y ⇒ # 4 ⇒ # 0

Step-by-step explanation:

* Lets revise how to find the inverse function

- At first write the function as y = f(x)

- Then switch x and y

- Then solve for y

- The domain of f(x) will be the range of f^-1(x)

- The range of f(x) will be the domain of f^-1(x)

* Now lets solve the problem

∵ f(x) = √(x - 4)

∴ y = √(x - 4) ⇒ switch x and y

x = √(y - 4) ⇒ square the two sides

∴ x² = [√(y - 4)]² ⇒ cancel the root by squaring

∴ x² = y - 4 ⇒ add 4 to the both sides

y = x² + 4

∴ f^-1(x) = x² + 4

* To find the domain of the inverse, find the range of the function

∵ The domain of f(x) is ⇒ x - 4 ≥ 0 (no negative value under√)

∴ the domain is x ≥ 4

- Substitute this value in the function to find the range

∵ x = 4

∴ y = √(4 - 4) = 0

∴ y ≥ 0

- The range of f(x) is y ≥ 0

∴ The domain of the inverse f^-1(x) is x ≥ 0

- The missing words

# x

# y

# 4

# 0