Respuesta :

Answer:

[tex]\frac{cos^2(\frac{\pi}{2}-x)}{\sqrt{1-sin^2(x)}}=\frac{sin^2(x)}{|cos(x)|}[/tex]

Step-by-step explanation:

To simplify this expression you must use the following trigonometric identities

[tex]cos(\frac{\pi}{2}-x) = sinx[/tex]     I

[tex]1-sin (x) ^ 2 = cos ^ 2(x)[/tex]      II

Remember that

[tex]\sqrt{f(x)^2} =f(x)[/tex]

Only if [tex]f(x)> 0[/tex]  for all x

If f(x) is not greater than 0 for all x then

[tex]\sqrt{f(x)^2} =|f(x)|[/tex]

Now we have the expression:

[tex]\frac{cos^2(\frac{\pi}{2}-x)}{\sqrt{1-sin^2(x)}}[/tex]

then using the trigonometric identities I and II we have to:

[tex]\frac{cos^2(\frac{\pi}{2}-x)}{\sqrt{1-sin^2(x)}}=\frac{sin^2(x)}{\sqrt{1-sin^2(x)}}\\\\\\\frac{sin^2(x)}{\sqrt{1-sin^2(x)}}= \frac{sin^2(x)}{\sqrt{cos^2(x)}}[/tex]

[tex]cos(x)[/tex] is not greater or equal than 0 for all x. So.

[tex]\frac{sin^2(x)}{\sqrt{cos^2(x)}}=\frac{sin^2(x)}{|cos(x)|}[/tex]

Finally  

[tex]\frac{cos^2(\frac{\pi}{2}-x)}{\sqrt{1-sin^2(x)}}=\frac{sin^2(x)}{|cos(x)|}[/tex]