Respuesta :
Answer:
Choice 5.: -1397.6 kJ/mol rxn.
Explanation:
Here's how to find the enthalpy change of a reaction [tex]\Delta H_\text{rxn}[/tex] from the standard enthalpy of formation [tex]\Delta H_\text{f}\textdegree{}[/tex] of each species.
- Find the sum of [tex]\Delta H_\text{f}\textdegree{}[/tex] for the products: [tex]\Sigma \left[\Delta H_f\textdegree{}(\text{Products})]\right[/tex]. Multiply the [tex]\Delta H_\text{f}\textdegree{}[/tex] of each product by its coefficient in the equation. Find the sum of those products.
- Find the sum of enthalpies of formation [tex]\Delta H_\text{f}\textdegree{}[/tex] for the reactants: [tex]\Sigma \left[\Delta H_f\textdegree{}(\text{Reactants})]\right[/tex]. Similarly, multiply the [tex]\Delta H_\text{f}\textdegree{}[/tex] of each reactant by its coefficient in the equation. Find the sum of those products.
- The enthalpy change of this reaction is the same as the difference between [tex]\Sigma \left[\Delta H_f\textdegree{}(\text{Products})]\right[/tex] and [tex]\Sigma \left[\Delta H_f\textdegree{}(\text{Reactants})]\right[/tex]. Note the order: product minus reactants. Keep all the signs as is in these calculations.
[tex]\Delta H_\text{f}\textdegree{} = 0[/tex] for the most stable allotrope of each elements under their standard state. For example,
- [tex]\text{O}_2[/tex] (not [tex]\text{O}_3[/tex] ozone) is the most stable allotrope of oxygen under STP.
- [tex]\text{O}_2[/tex] is a gas under STP.
As a result, [tex]\Delta H_\text{f}\textdegree{} = 0[/tex] for [tex]\text{O}_2\;(g)[/tex]. Note the gaseous state symbol. This value is implied such that it's not provided in the question.
For this reaction:
[tex]\Sigma \left[\Delta H_f\textdegree{}(\textbf{Products})]\right = 4 \times (+33.2) + 6\times (-285.83) = -1582.18\;\text{kJ}\cdot\text{mol}^{-1}[/tex].
[tex]\Sigma \left[\Delta H_f\textdegree{}(\textbf{Reactants})]\right = 4 \times (-46.11) + 7\times 0 = -184.44 \;\text{kJ}\cdot\text{mol}^{-1}[/tex].
Apply the equation:
[tex]\begin{aligned} \Delta H_\text{rxn} &= \Sigma \left[\Delta H_f\textdegree{}(\textbf{Products})]\right - \Sigma \left[\Delta H_f\textdegree{}(\textbf{Reactants})]\right\\ &= -1582.18\;\text{kJ}\cdot\text{mol}^{-1} - (-184.44 \;\text{kJ}\cdot\text{mol}^{-1})\\ &= -1397.74\;\text{kJ}\cdot\text{mol}^{-1}\end{aligned}[/tex].
The enthalpy change of the reaction −1397.6 kJ/mol.
We can determine the enthalpy change of the reaction from the enthalpy of formation of each specie as follows;
∆H(reaction) = ∑∆H◦f(products) - ∑∆H◦f(reactants)
Given the following from the question;
NH3(g) = −46.11 kJ /mol
NO2(g) = +33.2 kJ /mol
H2O(ℓ) = −285.83 kJ /mol
We can now substitute values;
∆H(reaction) = ∑(4 × 33.2) + (6 × (−285.83)) - ∑(4 × (−46.11)) + (7 × 0)) kJ /mol
The ∆H◦ f of oxygen is zero because it is a pure substance.
∆H(reaction) = (132.8 - 1714.98) - (-184.44 + 0) kJ /mol
∆H(reaction) =−1397.6 kJ/mol
Learn more: https://brainly.com/question/7827769