Respuesta :

frika

Answer:

A

Step-by-step explanation:

Use formulas:

[tex]r=\sqrt{x^2+y^2},[/tex]

[tex]\cos \theta=\dfrac{x}{\sqrt{x^2+y^2}}.[/tex]

Substitute them into the equation [tex]r=-14\cos \theta:[/tex]

[tex]\sqrt{x^2+y^2}=-14\cdot \dfrac{x}{\sqrt{x^2+y^2}}.[/tex]

Multiply this equation by [tex]\sqrt{x^2+y^2}:[/tex]

[tex]x^2+y^2=-14x.[/tex]

Now rewrite this equation as

[tex]x^2+14x+y^2=0,\\ \\x^2+14x+49-49+y^2=0,\\ \\(x+7)^2+y^2=49.[/tex]

This is the equation of the circle with center at point (-7,0) and radius r=7 (diameter 14).

Ver imagen frika

Answer:

A

Step-by-step explanation: