Respuesta :

Answer: [tex]y=6.0[/tex]

Step-by-step explanation:

The trigonometric identity you can use to calculate the value of "y" is:

[tex]cos\alpha=\frac{adjacent}{hypotenuse}[/tex]

Where the angle [tex]\alpha=53\°[/tex], the adjacent side is "y" and the hypotenuse of the right triangle is 10:

[tex]\alpha=53\°\\adjacent=y\\hypotenuse=10[/tex]

Substitute these values into [tex]cos\alpha=\frac{adjacent}{hypotenuse}[/tex] and solve for the adjacent side "y":

[tex]cos(53\°)=\frac{y}{10}\\(10)(cos(53\°))=y\\6.01=y[/tex]

Rounded to the nearest tenth:

[tex]y=6.0[/tex]

Answer:

The correct answer is  y = 6.0

Step-by-step explanation:

From the figure we can see a right angled triangle

points to remember

Sinθ = Opposite side/Hypotenuse

To find the value of y

Here y is the opposite side of angle  37° and hypotenuse = 10

Sin (37) = Opposite side/Hypotenuse= y/10

y = 10 * sin(37) = 10 * 0.6018 = 6.018 ≈ 6.0