Find the amplitude of the function.
y=4 sin 3x

ANSWER
a. 4
EXPLANATION
The given function is
[tex]y = 4 \sin(3x) [/tex]
This function is of the form:
[tex]y = A \sin(Bx) [/tex]
where the amplitude is |A|.
By comparison, A=4.
Therefore the amplitude is |4|=4
The correct choice is A.
Answer: a. 4
Step-by-step explanation:
Given the sine function in the form:
[tex]y = asin(b(h-x))+k[/tex]
You can identify the amplitude, the period, the vertical shift and the horizontal shift:
[tex]amplitude=|a|\\\\period=\frac{2\pi}{b}\\\\vertical\ shift=k\\\\horizontal\ shift=h[/tex]
For the function [tex]y=4sin3x[/tex], identify "a":
[tex]a=4[/tex]
Then the amplitude is:
[tex]Amplitude=|a|\\Amplitude=|4|\\Amplitude=4[/tex]