Respuesta :

ANSWER

a. 4

EXPLANATION

The given function is

[tex]y = 4 \sin(3x) [/tex]

This function is of the form:

[tex]y = A \sin(Bx) [/tex]

where the amplitude is |A|.

By comparison, A=4.

Therefore the amplitude is |4|=4

The correct choice is A.

Answer: a. 4

Step-by-step explanation:

Given the sine function in the form:

[tex]y = asin(b(h-x))+k[/tex]

You can identify the amplitude, the period, the vertical shift and the horizontal shift:

[tex]amplitude=|a|\\\\period=\frac{2\pi}{b}\\\\vertical\ shift=k\\\\horizontal\ shift=h[/tex]

For the function [tex]y=4sin3x[/tex], identify "a":

[tex]a=4[/tex]

Then the amplitude is:

[tex]Amplitude=|a|\\Amplitude=|4|\\Amplitude=4[/tex]

Otras preguntas