Respuesta :

Answer:

The volume of the container is [tex]38,772.72\ cm^{3}[/tex]

Step-by-step explanation:

step 1

Find the radius of the sphere

we know that

The surface area of a sphere is equal to

[tex]SA=4\pi r^{2}[/tex]

we have

[tex]SA=5,538.96\ cm^{2}[/tex]

[tex]\pi=3.14[/tex]

substitute the values and solve for r

[tex]5,538.96=4(3.14)r^{2}[/tex]

[tex]r^{2}=5,538.96/[4(3.14)][/tex]

[tex]r^{2}=441[/tex]

[tex]r=21\ cm[/tex]

step 2

Find the volume of the container

The volume of the sphere (container) is equal to

[tex]V=\frac{4}{3}\pi r^{3}[/tex]

we have

[tex]r=21\ cm[/tex]

[tex]\pi=3.14[/tex]

substitute the values

[tex]V=\frac{4}{3}(3.14)(21)^{3}=38,772.72\ cm^{3}[/tex]

Answer:

For the first part it would be  38772.72 cm^3 and for the second part it would be 65 minutes to fill the container.