Evaluate sin(sin^-1 √3/2) and assume that all angles are in Quadrant I.

Answer:
B. √3/2
Step-by-step explanation:
Sin[sin⁻¹ (√3/2)]
sin⁻¹ (√3/2 = 60°
60° is the acute angle, in the first quadrant
Therefore;
Sin[sin⁻¹ (√3/2)] = sin 60° ; since sin⁻¹ (√3/2 = 60°
Sin 60° = √3/2
Therefore, the answer = √3/2
Answer:
B) [tex]\frac{\sqrt{3}}{2}[/tex].
Step-by-step explanation:
Given : [tex]sin(sin^{-1}(\frac{\sqrt{3}}{2})[/tex].
To find : Evaluate.
Solution : We have given
[tex]sin(sin^{-1}(\frac{\sqrt{3}}{2})[/tex].
By the identity : [tex]sin(sin^{-1}(x)[/tex] = x .
Here, x = [tex]\frac{\sqrt{3}}{2}[/tex].
So, [tex]sin(sin^{-1}(\frac{\sqrt{3}}{2})[/tex] = [tex]\frac{\sqrt{3}}{2}[/tex].
Therefore, B) [tex]\frac{\sqrt{3}}{2}[/tex].