separate the number 24 into two parts where the products of the parts is 135. using a quadratic equation and completing the square​

Respuesta :

Answer:

The parts are [tex]15[/tex] and [tex]9[/tex]

Step-by-step explanation:

Let

x-----> one part

y----> second part

we know that

[tex]x+y=24[/tex]

[tex]y=24-x[/tex] -----> equation A

[tex]x*y=135[/tex] ----> equation B

substitute equation A in equation B

[tex]x*(24-x)=135[/tex]

[tex]24x-x^{2}=135\\ \\ x^{2}-24x+135=0[/tex]

Completing the square

[tex]x^{2}-24x+135=0[/tex]

[tex]x^{2}-24x=-135[/tex]

[tex](x^{2}-24x+12^{2})=-135+12^{2}[/tex]

[tex](x^{2}-24x+144)=9[/tex]

rewrite as perfect squares

[tex](x-12)^{2}=9[/tex]

[tex](x-12)=(+/-)3[/tex]

[tex]x=12(+/-)3[/tex]

[tex]x1=12(+)3=15[/tex]

[tex]x2=12(-)3=9[/tex]

The parts are [tex]15[/tex] and [tex]9[/tex]