Evaluate the given integral by changing to polar coordinates. sin(x2 + y2) dA R , where R is the region in the first quadrant between the circles with center the origin and radii 3 and 5

Respuesta :

In polar coordinates, the region [tex]R[/tex] is the set of points

[tex]\left\{(r,\theta)\mid3\le r\le5,\,0\le\theta\le\dfrac\pi2\right\}[/tex]

and we have [tex]x^2+y^2=r^2[/tex] and [tex]\mathrm dA=r\,\mathrm dr\,\mathrm d\theta[/tex]. So the integral, converted to polar, is

[tex]\displaystyle\iint_R\sin(x^2+y^2)\,\mathrm dA=\int_0^{\pi/2}\int_3^5r\sin r^2\,\mathrm dr\,\mathrm d\theta=\frac\pi2\int_3^5r\sin r^2\,\mathrm dr[/tex]

Substitute [tex]s=r^2[/tex] to get

[tex]=\displaystyle\frac\pi4\int_9^{25}\sin s\,\mathrm ds=\frac{(\cos9-\cos25)\pi}4[/tex]

Using polar coordinates, the result of the integral is: [tex]O = -0.4756\pi[/tex].

The most used relation for polar coordinates is:

[tex]x^2 + y^2 = r^2[/tex]

An integral in Cartesian coordinates is converted to polar using:

[tex]\int \int f(x,y) dA = \int \int f(r,\theta) rdrd\theta[/tex]

In this problem:

[tex]f(x,y) = \sin{x^2 + y^2}[/tex]

Thus:

[tex]f(r, \theta) = \sin{r^2}[/tex]

  • Region between the circles with center at the origin and radii 3 and 5, thus the inner limits of integration are [tex]r = 3[/tex] and [tex]r = 5[/tex].
  • First quadrant, thus, the outer limits of integration are: [tex]\theta = 0, \theta = \frac{\pi}{2}[/tex].

The polar integral is:

[tex]\int_{0}^{\frac{\pi}{2}} \int_{3}^5 \sin{r^2} r dr d\theta[/tex]

The inner integral is:

[tex]I = \int_{3}^5 \sin{r^2} r dr[/tex]

Using substitution:

[tex]u = r^2 \rightarrow du = 2rdr \rightarrow dr = \frac{du}{2r}[/tex]

[tex]I = \frac{1}{2} \int \sin{u} du[/tex]

[tex]I = -\frac{\cos{u}}{2}[/tex]

[tex]I = -\frac{\cos{r^2}}{2}_{3}^{5}[/tex]

Applying the fundamental theorem of calculus:

[tex]I = -\frac{\cos{5^2}}{2} + \frac{\cos{3^2}}{2} = -0.9512[/tex]

Then, the outer integral is:

[tex]O = \int_{0}^{\frac{\pi}{2}} -0.9512 d\theta[/tex]

[tex]O = -0.9512\theta_{0}^{\frac{\pi}{2}}[/tex]

[tex]O = -0.4756\pi[/tex]

The result of the integral is [tex]O = -0.4756\pi[/tex].

A similar problem is given at https://brainly.com/question/23412154