Respuesta :
ANSWER
[tex] lim_{x \to - 5}(f(x)) = f( - 5)[/tex]
EXPLANATION
If f(x) is continuous at
[tex]x = a[/tex]
Then,
[tex] lim_{x \to a}(f(x)) = f(a)[/tex]
The given function is
[tex]f(x) = 5x + 5[/tex]
[tex]f( - 5) = 5( - 5) + 5[/tex]
[tex]f( - 5) = - 25 + 5 = - 20[/tex]
[tex] lim_{x \to - 5}(f(x)) = 5( - 5) + 5[/tex]
[tex] lim_{x \to - 5}(f(x)) = - 20[/tex]
Since,
[tex] lim_{x \to - 5}(f(x)) = f( - 5)[/tex]
The function is continuous at
[tex]x = - 5[/tex]
Answer:
f is continuous at a = -5.
Step-by-step explanation:
We have given a function.
f(x) = 5x+5
We have to check continuity of function at a = -5.
From definition of continuity,
If f is continuous at x = a
[tex]\lim_{x \to a} f(x)= f(a)[/tex]
Putting x = a = -5 in given function ,we have
f(-5) = 5(-5)+5 = -25+5
f(-5) = -20
[tex]\lim_{x\to-5} f(x) =5(-5)+5[/tex]
[tex]\lim_{x \to-5}f(x) = -20[/tex]
Hence, [tex]\lim_{x \to-5} f(x)= f(-5)[/tex]
f is continuous at a = -5.