Respuesta :

ANSWER

[tex] lim_{x \to - 5}(f(x)) = f( - 5)[/tex]

EXPLANATION

If f(x) is continuous at

[tex]x = a[/tex]

Then,

[tex] lim_{x \to a}(f(x)) = f(a)[/tex]

The given function is

[tex]f(x) = 5x + 5[/tex]

[tex]f( - 5) = 5( - 5) + 5[/tex]

[tex]f( - 5) = - 25 + 5 = - 20[/tex]

[tex] lim_{x \to - 5}(f(x)) = 5( - 5) + 5[/tex]

[tex] lim_{x \to - 5}(f(x)) = - 20[/tex]

Since,

[tex] lim_{x \to - 5}(f(x)) = f( - 5)[/tex]

The function is continuous at

[tex]x = - 5[/tex]

Answer:

f is continuous at a = -5.

Step-by-step explanation:

We have given a function.

f(x)  = 5x+5

We have to check continuity of function at a  = -5.

From definition of continuity,

If f is continuous at x = a

[tex]\lim_{x \to a} f(x)= f(a)[/tex]

Putting x  = a = -5 in given function ,we have

f(-5) = 5(-5)+5 = -25+5

f(-5) = -20

[tex]\lim_{x\to-5} f(x) =5(-5)+5[/tex]

[tex]\lim_{x \to-5}f(x) = -20[/tex]

Hence, [tex]\lim_{x \to-5} f(x)= f(-5)[/tex]

f is continuous at a = -5.