hmeddy53
contestada

What is the frequency and energy per quantum (in Joules) of :
(a) A gamma ray with a wavelength of 0:600 pm,
(b) A microwave with a wavelength of 2.50 cm?

Respuesta :

(a) f = 5.00 × 10²⁰ Hz, E = 3.32 × 10⁻¹³ J;

(b) f = 1.20 × 10¹⁰ Hz, E = 7.96 × 10⁻²⁴J.

Explanation

What's the similarity between a gamma ray and a microwave?

Both gamma rays and microwave rays are electromagnetic radiations. Both travel at the speed of light at [tex]3.00 \times 10^{8}\;\text{m}\cdot\text{s}^{-1}[/tex] in vacuum.

[tex]f = \dfrac{c}{\lambda}[/tex]

where

  • f is the frequency of the electromagnetic radiation,
  • c is the speed of light, and
  • [tex]\lambda[/tex] is the wavelength of the radiation.

(a)

Convert all units to standard ones.

[tex]\lambda = 0.600\;\text{pm} = 0.600 \times 10^{-12} \;\text{m}[/tex].

The unit of [tex]f[/tex] shall also be standard.

[tex]f = \dfrac{c}{\lambda} = \dfrac{3.00\times 10^{8}\;\text{m}\cdot\text{s}^{-1}}{0.600\times 10^{12}\;\text{m}} = 5.00 \times 10^{20}\;\text{s}^{-1}= 5.00\times 10^{20}\;\text{Hz}[/tex].

For each particle,

[tex]E = h\cdot f[/tex],

where

  • [tex]E[/tex] is the energy of the particle,
  • [tex]h[/tex] is the planck's constant where [tex]h = 6.63\times 10^{-34}\;\text{J}\cdot\text{s}^{-1}[/tex], and
  • [tex]f[/tex] is the frequency of the particle.

[tex]E = h \cdot f = 6.63\times10^{-34}\;\text{J}\cdot\text{s}\times 5.00\times 10^{20}\;\text{s}^{-1} = 3.32\times10^{-13}\;\text{J}[/tex].

(b)

Try the steps in (a) for this beam of microwave with

  • [tex]\lambda = 2.50 \;\text{cm} = 2.50\times 10^{-2}\;\text{m}[/tex].

Expect the following results:

  • [tex]f = 1.20\times 10^{10}\;\text{Hz}[/tex], and
  • [tex]E = 7.96\times 10^{-24}\;\text{J}[/tex].