Respuesta :
Answer:
66.7
Step-by-step explanation:
tan27 = 34/x
0.5095 = 34/x
x = 34/0.5095
= 66.7

In ΔJKL, solve for x. Triangle JKL where angle K is a right angle. KL measures 34. The value of x is 66.7.
How to find the angle JK measures x?
Given,
Triangle JKL where angle K is a right angle.
KL measures 34.
JK measures x.
Let, [tex]\tan \left(27^{\circ}\right)=\frac{34}{x}$[/tex]
Multiply both sides by x, and we get
[tex]\tan \left(27^{\circ}\right) x=\frac{34}{x} x$[/tex]
Simplify
[tex]\tan \left(27^{\circ}\right) x=34$[/tex]
Divide both sides of the equation by [tex]$\tan \left(27^{\circ}\right)$[/tex]
[tex]\frac{\tan \left(27^{\circ}\right) x}{\tan \left(27^{\circ}\right)}=\frac{34}{\tan \left(27^{\circ}\right)}$[/tex]
Simplify
[tex]x=\frac{34}{\tan \left(27^{\circ}\right)}$[/tex]
x = 34 / 0.5095
x = 66.7
Therefore, the value of x is 66.7.
To learn more about the measure of angles
https://brainly.com/question/12273674
#SPJ2
