Respuesta :

znk

Answer:

66.7  

Step-by-step explanation:

  tan27 = 34/x

0.5095 = 34/x

          x = 34/0.5095

             = 66.7

Ver imagen znk

In ΔJKL, solve for x. Triangle JKL where angle K is a right angle. KL measures 34. The value of x is 66.7.

How to find the angle JK measures x?

Given,

Triangle JKL where angle K is a right angle.

KL measures 34.

JK measures x.

Let, [tex]\tan \left(27^{\circ}\right)=\frac{34}{x}$[/tex]

Multiply both sides by x, and we get

[tex]\tan \left(27^{\circ}\right) x=\frac{34}{x} x$[/tex]

Simplify

[tex]\tan \left(27^{\circ}\right) x=34$[/tex]

Divide both sides of the equation by [tex]$\tan \left(27^{\circ}\right)$[/tex]

[tex]\frac{\tan \left(27^{\circ}\right) x}{\tan \left(27^{\circ}\right)}=\frac{34}{\tan \left(27^{\circ}\right)}$[/tex]

Simplify

[tex]x=\frac{34}{\tan \left(27^{\circ}\right)}$[/tex]  

x = 34 / 0.5095

x = 66.7

Therefore, the value of x is 66.7.

To learn more about the measure of angles

https://brainly.com/question/12273674

#SPJ2

Ver imagen anjithaka