contestada

The lengths of three sides of a quadrilateral are shown below: Side 1: 1y2 + 3y − 6 Side 2: 4y − 7 + 2y2 Side 3: 3y2 − 8 + 5y The perimeter of the quadrilateral is 8y3 − 2y2 + 4y − 26.

Part A: What is the total length of sides 1, 2, and 3 of the quadrilateral? (4 points)

Part B: What is the length of the fourth side of the quadrilateral? (4 points)

Part C: Do the answers for Part A and Part B show that the polynomials are closed under addition and subtraction? Justify your answer. (2 points)

This is alegbra 1 9th grade i just need some help pleaseeeeeee

Respuesta :

Answer:

Part A : Total length of Given 3 side = [tex]6y^2+12y-21[/tex]

Part B :  Length of side 4 = [tex]8y^3-8y^2-8y-5[/tex]

Part C : Yes, Part A & Part B shows that Polynomials are closed under addition and subtraction

Step-by-step explanation:

Given: Sides of a quadrilateral, Side 1 = [tex]y^2+3y-6[/tex] , Side 2 = [tex]2y^2+4y-7[/tex],

            Side 3 = [tex]3y^2+5y-8[/tex].

           Perimeter of Quadrilateral = [tex]8y^3-2y^2+4y-26[/tex]

To find: [A] Total length of given 3 sides.

             [B] Length of Side 4.

             [C] Do part A & B show that the polynomials are closed

                   under addition and subtraction?

Part A -

Total length of Given 3 side = Side 1 + Side 2 + Side 3

                                               = [tex]y^2+3y-6+2y^2+4y-7+3y^2+5y-8[/tex]

                                               = [tex]y^2+2y^2+3y^2+3y+4y+5y-6-7-8[/tex]

                                               = [tex](1+2+3)y^2+(3+4+5)y+(-6-7-8)[/tex]

                                               = [tex]6y^2+12y+(-21)[/tex]

                                               = [tex]6y^2+12y-21[/tex]

Part B -

Length of side 4 = perimeter - total length of 3 sides

                           = [tex]8y^3-2y^2+4y-26-(6y^2+12y-21)[/tex]

                           = [tex]8y^3-2y^2+4y-26-6y^2-12y+21[/tex]

                           = [tex]8y^3-2y^2-6y^2+4y-12y-26+21[/tex]

                           = [tex]8y^3+(-2-6)y^2+(4-12)y-26+21[/tex]

                           = [tex]8y^3+(-8)y^2+(-8)y-5[/tex]

                           = [tex]8y^3-8y^2-8y-5[/tex]

Part C -

Yes, Part A & Part B shows that Polynomials are closed under addition and subtraction because after addition and subtraction result is also a polynomial.