Respuesta :
Answer:
Part A : Total length of Given 3 side = [tex]6y^2+12y-21[/tex]
Part B : Length of side 4 = [tex]8y^3-8y^2-8y-5[/tex]
Part C : Yes, Part A & Part B shows that Polynomials are closed under addition and subtraction
Step-by-step explanation:
Given: Sides of a quadrilateral, Side 1 = [tex]y^2+3y-6[/tex] , Side 2 = [tex]2y^2+4y-7[/tex],
Side 3 = [tex]3y^2+5y-8[/tex].
Perimeter of Quadrilateral = [tex]8y^3-2y^2+4y-26[/tex]
To find: [A] Total length of given 3 sides.
[B] Length of Side 4.
[C] Do part A & B show that the polynomials are closed
under addition and subtraction?
Part A -
Total length of Given 3 side = Side 1 + Side 2 + Side 3
= [tex]y^2+3y-6+2y^2+4y-7+3y^2+5y-8[/tex]
= [tex]y^2+2y^2+3y^2+3y+4y+5y-6-7-8[/tex]
= [tex](1+2+3)y^2+(3+4+5)y+(-6-7-8)[/tex]
= [tex]6y^2+12y+(-21)[/tex]
= [tex]6y^2+12y-21[/tex]
Part B -
Length of side 4 = perimeter - total length of 3 sides
= [tex]8y^3-2y^2+4y-26-(6y^2+12y-21)[/tex]
= [tex]8y^3-2y^2+4y-26-6y^2-12y+21[/tex]
= [tex]8y^3-2y^2-6y^2+4y-12y-26+21[/tex]
= [tex]8y^3+(-2-6)y^2+(4-12)y-26+21[/tex]
= [tex]8y^3+(-8)y^2+(-8)y-5[/tex]
= [tex]8y^3-8y^2-8y-5[/tex]
Part C -
Yes, Part A & Part B shows that Polynomials are closed under addition and subtraction because after addition and subtraction result is also a polynomial.