Answer: ethylene glycol (molar mass = 62.07 g/mol)
Explanation:
Depression in freezing point :
Formula used for lowering in freezing point is,
[tex]\Delta T_f=k_f\times m[/tex]
or,
[tex]\Delta T_f=k_f\times \frac{\text{mass of solute}}{\text{molar mass of solute}\times \text{weight of solvent in kg}}[/tex]
where,
[tex]T_f[/tex] = change in freezing point
[tex]k_f[/tex] = freezing point constant= [tex]9.10^0C/m[/tex]
m = molality
Given mass of solute = 0.807 g
Molar mass of solute=? g/mol
weight of solvent in kg= 11.6 g=0.0116 kg
[tex]\Delta T_f=T^{o}_f-T_f=25.5^0C-15.3^0C)=10.2^0C[/tex]
[tex]10.2=9.10\times \frac{0.807}{\text{molar mass of solute}\times 0.0116kg}[/tex]
[tex]{\text{molar mass of solute}}=62.07 g/mol[/tex]
Thus the solute is ethylene glycol which has same molecular mass as calculated, i.e 62.07 g/mol.