A polygon with an area of (4x2 + 2x - 16) square units is combined with a rectangle that has a width of (6x + 2) units and a length of (x - 5) units. Then, a polygon with an area of (2x2 - 30x - 10) square units is removed. What is the area of the final polygon?

Respuesta :

sushhi

the Answer should be :

328                                              

Answer:

The area of new polygon is [tex]22 x^2 + 4 x - 16[/tex].

Step-by-step explanation:

The area of square = [tex]4x^2 + 2x - 16[/tex]

Width of the rectangle = 6x+2

Length of the rectangle = x-5

Area of the rectangle = [tex](6x+2)(x-5)=6 x^2 - 28 x - 10[/tex]

Then we combined square and rectangle. The area of combined figure is the sum of area of square and rectangle.

[tex]\text{Combined area}=(4x^2 + 2x - 16)+(6 x^2 - 28 x - 10)[/tex]

On combining like terms we get

[tex]\text{Combined area}=(4x^2+6x^2)+ (2x-28x)+ (- 16- 10)[/tex]

[tex]\text{Combined area}=10x^2-26x-26[/tex]

Then, a polygon with an area of [tex]2x^2 - 30x - 10[/tex] square units is removed. So, new area of the polygon is

[tex]Area=(10x^2-26x-26)-(2x^2 - 30x - 10)[/tex]

[tex]Area=(10x^202x^2)+(-26x+30x)+(-26+10)[/tex]

[tex]Area=8 x^2 + 4 x - 16[/tex]

Therefore the area of new polygon is [tex]22 x^2 + 4 x - 16[/tex].