Respuesta :

Space

Answer:

[tex]\displaystyle \frac{sin(\sqrt{x})}{4x}[/tex]

General Formulas and Concepts:

Algebra I

  • Exponential Rule [Rewrite]:                                                                              [tex]\displaystyle b^{-m} = \frac{1}{b^m}[/tex]
  • Exponential Rule [Root Rewrite]:                                                                     [tex]\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}[/tex]

Calculus

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                       [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]

Integrals

Integration Rule [Fundamental Theorem of Calculus 2]:                                        [tex]\displaystyle \frac{d}{dx}[\int\limits^x_a {f(t)} \, dt] = f(x)[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle g(t) = \int\limits^{\sqrt{x}}_1 {\frac{sin(t)}{2t}} \, dt[/tex]

Step 2: Differentiate

  1. Fundamental Theorem of Calculus 2 [Derivative Rule - Chain Rule]:          [tex]\displaystyle g'(x) = \frac{sin(\sqrt{x})}{2\sqrt{x}} \cdot \frac{d}{dx}[\sqrt{x}][/tex]
  2. Rewrite [Exponential Rule - Root Rewrite]:                                                     [tex]\displaystyle g'(x) = \frac{sin(\sqrt{x})}{2\sqrt{x}} \cdot \frac{d}{dx} \bigg[ x^\bigg{\frac{1}{2}} \bigg][/tex]
  3. Basic Power Rule:                                                                                            [tex]\displaystyle g'(x) = \frac{sin(\sqrt{x})}{2\sqrt{x}} \cdot \frac{1}{2}x^\bigg{\frac{1}{2} - 1}[/tex]
  4. Simplify [Exponential Rule - Rewrite]:                                                             [tex]\displaystyle g'(x) = \frac{sin(\sqrt{x})}{2\sqrt{x}} \cdot \frac{1}{2x^\bigg{\frac{1}{2}}}[/tex]
  5. Rewrite [Exponential Rule - Root Rewrite]:                                                     [tex]\displaystyle g'(x) = \frac{sin(\sqrt{x})}{2\sqrt{x}} \cdot \frac{1}{2\sqrt{x}}[/tex]
  6. Multiply:                                                                                                             [tex]\displaystyle g'(x) = \frac{sin(\sqrt{x})}{4x}[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e