Una escalera de 13 pies de largo se recuesta a una pared, de forma que la base de la escalera se encuentra separada de la pared, al nivel del piso, a una distancia de 5 pies. Calcular la altura que llega la escalera en la pared. Recuerde que en un triángulo rectángulo, la hipotenusa, elevada al cuadrado, es igual a la suma de los cuadrados de los otros lados. De ser necesario aproxime a la décima de pie

Respuesta :

Answer:

[tex]12\ ft[/tex]

Step-by-step explanation:

The question in English is

A 13-foot long staircase rests on a wall, so that the base of the staircase is separated from the wall, at floor level, at a distance of 5 feet. Calculate the height of the ladder on the wall. Remember that in a right triangle, the hypotenuse, squared, is equal to the sum of the squares on the other sides. If necessary, approach the tenth foot

Applying the Pythagoras Theorem

[tex]13^{2} =5^{2}+h^{2}[/tex]

Solve for h

[tex]h^{2}=13^{2}-5^{2}[/tex]

[tex]h^{2}=144[/tex]

[tex]h=12\ ft[/tex]

For this case we have that, the Pythagorean theorem states:

[tex]c = \sqrt {a ^ 2 + b ^ 2}[/tex]

In this case we have to:

[tex]c = 13 \ feet\\b = 5 \ feet[/tex]

We must find the height, that is, a.

Clearing we have:

[tex]a = \sqrt {c ^ 2-b ^ 2}[/tex]

Substituting:

[tex]a = \sqrt {13 ^ 2-5 ^ 2}\\a = \sqrt {144}\\a = 12[/tex]

So, we have that height is 12 feet.

ANswer:

12 feet