Respuesta :

Answer:

[tex]a_{63}[/tex] = 1

Step-by-step explanation:

The n th term of an arithmetic progression is

[tex]a_{n}[/tex] = a + (n - 1)d

where a is the first term and d the common difference

use the 9 th term and 7 th term to find a and d

[tex]a_{9}[/tex] = a + 8d = [tex]\frac{1}{7}[/tex] → (1)

[tex]a_{7}[/tex] = a + 6d = [tex]\frac{1}{9}[/tex] → (2)

Subtract (2) from (1) term by term

2d = [tex]\frac{2}{63}[/tex] ⇒ d = [tex]\frac{1}{63}[/tex]

Substitute this value into (2) and solve for a

a + [tex]\frac{6}{63}[/tex] = [tex]\frac{1}{9}[/tex]

a = [tex]\frac{1}{9}[/tex] - [tex]\frac{6}{63}[/tex] = [tex]\frac{1}{63}[/tex]

Hence

[tex]a_{63}[/tex] = [tex]\frac{1}{63}[/tex] + [tex]\frac{62}{63}[/tex] = 1