Solve the triangle. A = 52°, b = 14, c = 6 a ≈ 14.9, C ≈ 24.2, B ≈ 103.8 a ≈ 11.3, C ≈ 24.2, B ≈ 103.8 a ≈ 14.9, C ≈ 28.2, B ≈ 99.8 No triangles possible

Respuesta :

If you consider

Option (A) in which

b = 14, c = 6, a = 14.9→→→→Sides of Triangle

A= 52°, C = 24.2°, B = 103.8°→→Angles of Triangle

As , you can see that sum of two sides is greater than third side

And , sum of three angles of triangle is 180°.

b +c= 14 +6=20>a=14.9

c+a=6+14.9=20.9>b=14

a+b=14.9 +14=28.9>c=6

Sum of the angles = (52)° + (24.2)°+ (103.8)°

                               =  (52)° + (128)°

                               = 180°

So, yes ,triangle is Possible.

Ver imagen Аноним

Answer:

B≈103.8° , a≈11.3 and C≈24.2°

B is correct.

Step-by-step explanation:

Given: [tex]A=52^\circ, b=14 \text{ and } c=6[/tex]

Using sine find rest part of the triangle.

Sine law:

[tex]\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}[/tex]

Cosine Law:

[tex]a^2=b^2+c^2-2bc\cos A[/tex]

where,  [tex]A=52^\circ, b=14 \text{ and } c=6[/tex]

[tex]\dfrac{a}{\sin 52^\circ}=\dfrac{14}{\sin B}=\dfrac{6}{\sin C}[/tex]

[tex]a^2=14^2+6^2-2(14)(6)\cos 52^\circ=158.57[/tex]

[tex]a\approx 11.3[/tex]

[tex]\dfrac{a}{\sin A}=\dfrac{b}{\sin B}[/tex]

[tex]\dfrac{11.3}{\sin 52^\circ}=\dfrac{6}{\sin B}[/tex]

[tex]\sin B=0.4184[/tex]

[tex]B\approx 103.8[/tex]

[tex]A+B+C=180^\circ[/tex]

[tex]C\approx 180-52-103.8 = 24.2[/tex]

Hence, B≈103.8° , a≈11.3 and C≈24.2°